Preparation of Schoolchildren for the Olympiad on Artificial Intelligence
1. Grigoriev, S. G., Kalinin, I. A., Samylkina, N. N., 2022. System of tasks for the first All-Russian Olympiad of schoolchildren on artificial intelligence. Informatics and Education, no. 37 (3), pp. 12–20. DOI: 10.32517/0234-0453-2022-37-3-12-20 (In Russ.)
2. Ryzhova, N. I., Trubina, I. I., Koroleva, N. Y., Filimonova, E. V., 2022. Artificial intelligence as an actual trend of the content of informatics teaching in conditions of digitalization. Teachers XXI century, no. 2–1, pp. 11–22. EDN: ZGIENM. DOI: 10.31862/2073-9613-2022-2-11-22. (In Russ.)
3. Yang, D., Shi, B., Samylkin, A., 2022. Graphical Neural Networks for the Global Economy with Microsoft DeepGraph. WSDM 22: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. NY, Association for Computing Machinery, 1655. DOI: https://doi.org/10.1145/3488560.3510020 (In Eng.)
4. Machalica, M., Samylkin, A., Port, M., Chandra, S., 2019. Predictive Test Selection. 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 91–100. DOI: https://doi.org/10.1109/ICSE-SEIP.2019.00018 (In Eng.)
5. Russell, S., Norvig, P., 2007. Artificial intelligence: a modern approach, 2nd ed. Moscow: Williams; 1408 p. (In Russ.)
6. Broussard, M., 2020. Artificial Intelligence: The Limits of Possible. Moscow: Alpina non-fiction Publ., 362 p. (In Russ.)
7. Giarratano, D., Riley, G., 2007. Expert systems: principles of development and programming: 4th ed. Moscow: Williams Publ., 1152 p. (In Russ.)
8. Kalinin, I. A., Samylkina, N. N., 2013. Informatics. Advanced level. 11th grade. Moscow: BINOM. Laboratory of Knowledge, 216 p. (In Russ.)
9. Yasnitsky, L. N., 2008. Introduction to artificial intelligence. Moscow: Academy Publ., 176 p. (In Russ.)
10. Yasnitsky, L. N., 2012. Artificial Intelligence. Elective course: textbook. Moscow: BINOM. Laboratory of Knowledge, 197 p. (In Russ.)
11. Samylkina, N. N., Salakhova, A. A., 2022. Teaching the basics of artificial intelligence and data analysis in the course of computer science at the level of secondary general education: monograph. Moscow: MPSU Publ., 228 p. DOI:
https://doi.org/10.31862/9785426310643 (In Russ.)
12. Stoyanov, S., Glushkova,T., Papancheva, R., 2021. Source intellect. Knowledge representation through logic. Bourgas, Logic Programming LLC Art Publishing House, 248 p. (In Russ.)
13. Joshi, P., 2019. Artificial intelligence with examples in Python. St. Petersburg: Dialectics Publ., 448 p. (In Russ.)
14. Levchenko, I. V., 2019. Main approaches to teaching elements of artificial intelligence in the school course of informatics. Informatics and Education, no. 34 (6), pp. 7–15. DOI: https:// doi.org/10.32517/0234-0453-2019-34-6-7-15 (In Russ.)
15. Bogdanova, A. N., 2021. Elective course “Fundamentals of artificial intelligence” for high school students. Informatics at school, no. 20 (7), pp. 27–33. DOI: https://doi.org/10.32517/2221-1993-2021-20-7-27-33 (In Russ.)
16. Stoyanov, S., Glushkova, T., Papancheva, R., 2019. Artificial Intelligence. Problem solving through search. Bourgas, Logic Programming LLC Art Publishing House, 312 p. (In Eng.)
17. Agrawal, R., Srikant, R. Fast algorithms for mining association rules in large databases. Proc. of the 20th Int. Conf. on Very Large Data Bases (VLDB). Santiago, Chile, 1994, 487–499. Available at: https://vldb.org/conf/1994/ P487.PDF(In Eng.)
18. Pickover, K., 2021. Artificial Intelligence. An illustrated history. From automata to neural networks. Moscow: Sindbad Publ., 250 p. (In Russ.)
19. Friedl, J., 2008. Regular expressions. St. Petersburg: SymbolPlus Publ., 608 p. (In Russ.)
20. Variative teaching of the basics of artificial intelligence in general education on the basis of integrative approach: a monograph / S. D. Karakozov, N. N. Samylkina, A. A. Salakhova, E. A. Samokhvalova. Moscow: MPSU, 2024, 360 p. (In Russ.)